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Two problems:

1. Wall crossing in A/ = 2 supersymmetric theories

2. Bound state spectrum of multi-centered black holes in
N = 2 supergravity.




Wall crossing

1. Introduction

2. Our results and comparison with earlier results

3. ‘Derivation’

Even though we shall derive the result using black holes in
N = 2 supergravity, we expect this to be a general formula,
valid also in V = 2 supersymmetric gauge theories.




Consider an \/ = 2 supersymmetric string theory in D=4,
e.g. type Il string theory on a Calabi-Yau 3-fold.

Such a theory generically has a certain number n, of
vector multiplet fields.

= there are (ny + 1) U(1) gauge fields.

A given state is characterized by (ny + 1) electric charges
qi and (ny + 1) magnetic charges p' (1 <1< ny +1).

v = (qi, p') takes values over some lattice I'.

(7,7") = (aip" - p'ay)




Let t denote a point in the moduli space.

The BPS mass formula takes the form

m(y.t) = Z(v,b)],  Z(v.t)=aif'(t)—p'ai(t)

for some known complex functions f(t), g(t).

We denote by Q(v,t) the index of BPS states carrying
charge ~ at the point t:

Q(y,t) = T,((-1)F)

Tr': removes the trace over the fermion zero modes
associated with broken supersymmetries.

Q(~, 1) is independent of t except for jumps across walls of
marginal stability.




Let 74,72 € I and take a codimension 1 subspace of the
moduli space on which

arg Z(v,t) = arg Z(y2, 1)
On this subspace ,
1Z(m1 + 72, 1) = [Z(71, 1)] + [2(72, 1)

Thus a state of charge (1 + 2) is marginally unstable
against decay into a pair of states carrying charges ~; and

V2.

More generally a state carrying charge (M~ + N+»)
becomes marginally unstable.

= Q(M~; + Nv2,t) could jump as t crosses this wall.




Goal: Compute the change in Q(M~; + N+,) across the wall.

Note: Only states carrying charges in the 2D sublattice
spanned by ~4 and v, are relevant near this wall.

Assumption: After taking appropriate linear combinations,
it is possible to choose the vectors v, and -, such that:

BPS states carrying charges (M~; + Nv2) exist only for
M.N>0orMN <0.

= Define I = {my7 + ny2 : m,n > 0,(m,n) # (0,0)}




Consider two chambers in the moduli space separated by
the wall.

¢ : y2lm(Z2 Z,) >0, Y12 = {71, 72)
c : ~vi2lm (221 272) <0
Q*(v): index in these two chambers

We shall calculate O~ in terms of QT

The results are best stated in terms of ‘rational invariants

=> m2Q(a/m)

m|a




Define:

Then

AQ(Q):Z Z Lg(ah'"Oén)f_z+(a1)-~-§?2+(an)
n>2 {aq,-anef} S({ox})

041+<~cxn:a

If m; of the ok’s take the same value 51, my of the oy’s take
the same value (5, etc then

S({auc}) = 1/ ] mu!
k

d(aq, - - - an) Will be given shortly.

Note: ‘charge conservation rule’ (o« = a1 + - - - an)



A generalization for the refined ‘index’

Q(y,y) = Tr, (~y)**

— not a protected index in string theory, but we can
nevertheless calculate its jump across a wall of marginal
stability.

d(aq,---an,y) will be given shortly.

g(ah"'an,y) _>g(0517"'04n) asy_>1

We recover the earlier formulee as y — 1



Result for g(a4, ..

on,Y)  (for ajj = (i, qj) >0 for i<j)

g(c,. . any) = (—y) "Xk (y2 —q)1on
Z (_1)571y226§sz<iaiimi(a

partitions

) m®)

m;

The sum runs over all ordered partitions of (aq + -+ + an)
into s vectors 5 (1 <a <s,1 < s < n) such that

0,1 V i

)
<Z 5(3)7051+-.-+an>>0 vV bwith1<b<s-—1

a=1



This wall crossing formula

— reproduces the semi-primitive wall crossing formula of
Denef and Moore,

— agrees with the formulae of Kontsevich and Soibelman
and of Joyce and Song in all cases tested so far (up to n=5)

— the ‘charge conservation rules’ and the ‘identical particle
rules’ agree with the KS formula after expressing the latter
in terms of Q.

However so far we do not have a proof of equivalence.




KS formula:
Gaiotto, Moore, Neitzke; Andriyash, Denef, Jafferis, Moore

Consider the algebra:
[e%e“{’] = ’i(<777/>ay) e )

=y ==y
y-1y

R(X,Y) =

Define:

+ ~E
V’y - eXp[Q (’77Y)e‘/]

Then

+ _ —
H VM“/1+N’72 - H VM% +Nv2
M>0,N>0, M>0,N>0,
M/NJ M/NT

— can be used to determine O interms of Q.




‘Derivation’
Supergravity picture:

BPS states: Single centered black holes or multi-centered
bound states of single centered black holes.

In ¢ the only configurations which contribute to Q" (+) are
single units (molecules) which remain immortal across the
wall of marginal stability.

A molecule can contain a single BH of charge v < [ or
bound states of multiple BH, each with charge lying
outside [, but total charge v  I".

As we approach the wall the size of the molecule remains
finite.




In ¢~ the index Q~ () gets contribution from single
molecules and also bound states of these molecules.

As we approach the wall from ¢~ the intermolecular
separation goes to oo and only single molecule states
remain on the other side.

= Q7T describes the index for single molecules.

Q~ describes the index for single molecules + molecular
bound states.




Naive guess:

AQ(a) :Z Z g(ag, - -an) QT (aq) - Q% (an)
n>2 {aq,-an€ef}
aq+-an=«
d(a1, - - an): Index of supersymmetric bound states of n
centers with charges a4, - - - an, ignoring the internal
contribution to the index from each center.

Caveat: We need to take into account the effect of
symmetrization for identical particles.

Example: Two identical bosonic centers, each with
degeneracy Q, will produce Q(Q2 + 1)/2 states.

Combining this with non-trivial g is a complicated problem.




Strategy:

1. Argue that we can replace Bose/Fermi statistics by
Boltzmann statistics if we replace Q2 by .

Then

A=Y Y = —g(ar,-an)@ (ar) -0 (an)

S({ox})

n>2 {oq ,ran€fl}

Qaq+-ap=a
S({ak}): Boltzmann factor (m! for m identical particles)

2. Calculate g(aq, - - - an) by computing the index
associated with n-molecule quantum mechanics treating
the different molecules as distinguishible (even if some of
the ax’s are equal).




Consider a system of mutually non-interacting molecules
carrying charges o vy, with total charge k~.

e.g. ms molecules with charge s, with ) ', smg = k.

ds: index of the molecule of charge s~p.

Net index Ny = Z H[1 (ds +ms — 1)1

oo s mg! (ds—1))!
> g Sms=k




S H[ 1 (ds +ms—1)!
e mg!  (ds —1))!
Zssms k

For bosons ds > 0, and mg identical bosons occupying ds
states produce a degeneracy of

d® = ds(ds +1) - (ds + ms — 1)/mg!

For fermions ds < 0, and ms fermions occupying |ds| states
have total degeneracy

dP) = ((ds|)(|ds| — 1)+ (|ds] — ms +1)/ms!

and index

(_1)msd(F) =ds(ds +1)---(ds + mg —1)/mg!




Now consider a system of particles carrying charges s
fors =1,2, ..., obeying Boltzman statistics, and carrying

index ~
ds =) m'dg/m
m|s

Total index of a state carrying charge k-o made out of
these particles:

My = Z Hn.:s!(aS)ms

{ms} S
>"g Smg=k




My = Z Hn:s!(aS)ms

{ms} S
> g Sms=k

ds = Z m- ds/m

m(s

N 1 (ds +mg —1)!
Ne= Z H[ms! (ds —1))! }

{ms} S
> g Smg=k

One can easily check that

D M =TT = x") "% =) " Niex®
k n k

M, = Ny




ds gets contribution from orbital part dor,(S70) and internal
part Q(svp)-

We shall argue that dor, (ko) = kdorb(70)
Z m_1ds/m
m|s

Z M~ dorb(S70/M)Q(s70/M)

Zm (1/m)dorb(870)€2(s70/m)

dorb (s7) Z m 2Q(S'Y0/m) = dorb(s'YO)Q(s’YO)

m|s

= we can use Boltzmann statistics provided Q — Q.




Multi-centered black hole dynamics:
1. The centers move in the minimum of the potential.

If we fix the position of one then for every other center we
have a 2 dimensional configuration space.

2. The centers interact via Lorentz force

— ignore interaction among parallel charges

3. Supersymmetry forces the system to be in the ground
state (‘lowest Landau level’)

— the configuration space can be regarded as the phase
space with a definite symplectic form




Now compare two configurations:

1. k identical nearly coincident centers each with charge g
moving in a background of other charges.

2. A center of charge ko moving in the same background.

Compare the phase space density associated with the two
dimensional motion of kv vs the two dimensional motion
of a single ~g, keeping all the other charges fixed.

The phase space density of the particle of charge kg is k
times that of the particle of charge .

dorb(k'YO) =k dorb(’YO)

We assume that the classical result is not corrected by
quantum effects.




Our next goal is to compute g(a1, - - - an, Y)-

= quantize multi-centered black hole solutions.

1. Indirect approach: relates the index associated with this
quantum mechanics to that of a supersymmetric quiver quantum

mechanics with

a. h nodes each carrying a U(1) factor

b. jj = (a4, ;) arrows from node i to node j

Result for this class of quivers is known and gives us back the
formula for g(«4, - - - an,y) given earlier.




2. Direct approach: Calculate the index by expressing it as
an integral over the classical phase space and then
evaluating this integral using localization techniques.




Result of direct approach (+ some guesswork based on
known results for n = 2, 3)

g(Oé1, © Qi V) - Tr(_y)2J3

Of these (—1)2): takes the same value on all states:

(1) = (—1) B ewtn

y?%s is a slowly varying function of the phase space
coordinates fory ~ 1

= Tr(y?%) can be evaluated as an integral over classical
phase space

Gai(a1, - an1y) = (—1)Ticrcutn- / (y)2s




Gei(ar, - anyy) = (—1)Zi<iortn /(!/)2"3
The phase space has an SU(2) rotation symmetry.

— can be used to express the integral as a sum over fixed
points of rotation along z-axis

— collinear configuration of multi-centered black holes
given by solutions to
1]
i

=1 }zii ‘

n
:Lzaii, Zjj = Z; — zj, L>0
j=1

i# i#

Solutions labelled by permutations o such that

Z,.) < 2, for i<j




Then the phase space integral gives:

ga({ai}y) = (—1)Z<t"1(2iny)t-n
Z s(o) yZi<j %o (i) ()

permutations o

The sum runs over only those permutations for which the
solution exists.

s(o): a sign which can be determined

At y = 1 this agrees with the quiver quantum mechanics
result in all cases tested.




da({ai},y) = (—1)Z<i® = 1(2ny)!-n
Z s(o) y2i<i @) l)

permutations o

— cannot be the correct quantum result for Tr(y?’s) which
must have y — e2"'y symmetry.

— reflects the fact that classical phase space integral does
not know about angular momentum quantization.

Taking clue from known results for n = 2,3 we replace 2iny
by 2sinhiny = (y —y~'):
9({04},\/) = (—1)Zi<j ajj+n—1 (y _ y—1)1—n
> s(o)yZi<i®me0

permutations o




g{aily) = (—1)Zern iy —y Tyt
Z s(o) y2i<i %o )o()

permutations o

— agrees with the quiver quantum mechanics results in all
cases tested (up to n=5).

(also seems to work away from the wall of marginal
stability where quiver quantum mechanics sometimes
fails.)




Multi-centered black hole bound states

Consider an N/ = 2 supersymmetric string theory at a
generic point of the moduli space.

For a given charge o the index receives contribution from
single centered black holes as well as multi-centered black
holes.

The index 2 for a single centered black hole can be
computed in principle using quantum entropy function
formalism.

Question: How can we use this information to compute the
index associated with multi-centered black holes?




Naive guess: Use the same formula for the bound state
spectrum as near the wall of marginal stability.

Z Z S({Lk})g(ah - an,Y) Q(ahy) . 'Q(Oén,Y)

n>1 {aq,--an€r}
aq+--ap=a

g({ai},y) = (—1)Zi<iortn=T(y _y-T)i-n

Z s(o) yZi<i %o )o()

permutations o

Differences:
1. ai’s span the full lattice instead of 2D sublattice.

2. The ’s now refer to index of single centered black holes
rather than black hole molecules.




Caveats:

1. In this case the relevant equations are

ci: constants which depend on moduli and charges

— necessary but not sufficient conditions for existence of
collinear multi-black hole solutions.

For each such solution we must check that the
corresponding metric is regular.

— a simple algebraic procedure.




2. For some charges, besides collinear solutions we also
have ‘scaling solutions’ which are invariant under rotation
about the z-axis.

— solutions where all the centers approach each other.

How do we evaluate the contribution from these additional
fixed points?

Our proposal: use ‘minimal modification hypothesis’




1. First ignore the contribution from the scaling solutions
and express the result for the index of bound states of
centers carrying charges aq, - - - an as sum of terms like

f(---;y)Q (al17y BEE (alkvy k)

2. If f(- - - ;y) is a finite linear combination of y*™, 1.e. if the
denominators involving (y — y=¥) are cancelled by the
numerator factors, then leave the term unchanged.

3. Otherwise add to f a function h such that

a. (f + h) is a finite linear combination of y*™.

b. h vanishes as y — .

This algorithm gives the correct result in all known cases.




Example:

Suppose we have a three centered configuration and
suppose that the contribution from collinear solutions
leads to the following result for f(aq, ag, as,y):

(D'y-y 2 (Y HyT) 1=y

i<j
— not a finite linear combination of y*™.

Our prescription gives

(-)'(y-y")? (y' +y - 2) for | even
(—1)'(y-y )2 (y' ry oy —y—1) for I odd




This gives a complete algorithm for computing the index
for a given charge « in an N = 2 supersymmetric string
theory if we know the index Q2 of single centered black
holes.

This can then be compared with the microscopic results.




