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Plan

Two problems:

1. Wall crossing in N = 2 supersymmetric theories
arXiv:1011.1258

2. Bound state spectrum of multi-centered black holes in
N = 2 supergravity.

work in progress



Wall crossing

1. Introduction

2. Our results and comparison with earlier results
(Kontsevich-Soibelman formula)

3. ‘Derivation’

Even though we shall derive the result using black holes in
N = 2 supergravity, we expect this to be a general formula,
valid also in N = 2 supersymmetric gauge theories.



Introduction

Consider an N = 2 supersymmetric string theory in D=4,
e.g. type II string theory on a Calabi-Yau 3-fold.

Such a theory generically has a certain number nv of
vector multiplet fields.

⇒ there are (nv + 1) U(1) gauge fields.

A given state is characterized by (nv + 1) electric charges
qI and (nv + 1) magnetic charges pI (1 ≤ I ≤ nv + 1).

γ ≡ (qI,pI) takes values over some lattice Γ.

〈γ, γ′〉 ≡ (qIp′I − pIq′I)



Let t denote a point in the moduli space.

The BPS mass formula takes the form

m(γ, t) = |Z(γ, t)|, Z(γ, t) = qI fI(t)− pI gI(t)

for some known complex functions fI(t), gI(t).

We denote by Ω(γ, t) the index of BPS states carrying
charge γ at the point t:

Ω(γ, t) = Tr′γ((−1)F)

Tr′: removes the trace over the fermion zero modes
associated with broken supersymmetries.

Ω(γ, t) is independent of t except for jumps across walls of
marginal stability.



Let γ1, γ2 ∈ Γ and take a codimension 1 subspace of the
moduli space on which

arg Z(γ1, t) = arg Z(γ2, t)

On this subspace (wall),

|Z(γ1 + γ2, t)| = |Z(γ1, t)|+ |Z(γ2, t)|

Thus a state of charge (γ1 + γ2) is marginally unstable
against decay into a pair of states carrying charges γ1 and
γ2.

More generally a state carrying charge (Mγ1 + Nγ2)
becomes marginally unstable.

⇒ Ω(Mγ1 + Nγ2, t) could jump as t crosses this wall.



Goal: Compute the change in Ω(Mγ1 + Nγ2) across the wall.

Note: Only states carrying charges in the 2D sublattice
spanned by γ1 and γ2 are relevant near this wall.

Assumption: After taking appropriate linear combinations,
it is possible to choose the vectors γ1 and γ2 such that:

BPS states carrying charges (Mγ1 + Nγ2) exist only for
M,N ≥ 0 or M,N ≤ 0. Andriyash, Denef, Jafferis, Moore

⇒ Define Γ̃ ≡ {mγ1 + nγ2 : m,n ≥ 0, (m,n) 6= (0,0)}

occupied

occupied

empty empty



Consider two chambers in the moduli space separated by
the wall.

c+ : γ12 Im
(
Z∗γ1

Zγ2

)
> 0, γ12 ≡ 〈γ1, γ2〉

c− : γ12 Im
(
Z∗γ1

Zγ2

)
< 0

Ω±(γ): index in these two chambers

We shall calculate Ω− in terms of Ω+

The results are best stated in terms of ‘rational invariants’
... Joyce, Song; ...

Ω̄(α) =
∑
m|α

m−2 Ω(α/m)



Results

Define: ∆Ω̄(α) ≡ Ω̄
−

(α)− Ω̄
+

(α)

Then

∆Ω̄(α) =
∑
n≥2

∑
{α1,···αn∈Γ̃}
α1+···αn=α

1
S({αk})

g(α1, · · ·αn) Ω̄
+

(α1) · · · Ω̄+
(αn)

If m1 of the αk’s take the same value β1, m2 of the αk’s take
the same value β2 etc then

S({αk}) = 1/
∏

k

mk!

g(α1, · · ·αn) will be given shortly.

Note: ‘charge conservation rule’ (α = α1 + · · ·αn)



A generalization for the refined ‘index’
KS,· · · ; Dimofte, Gukov

Ω(γ,y) ≡ Tr′γ(−y)2J3

– not a protected index in string theory, but we can
nevertheless calculate its jump across a wall of marginal
stability.

Ω̄(α,y) ≡
∑
m|α

m−1 y− y−1

ym − y−m Ω(α/m,ym)

∆Ω̄(α,y) =
∑
n≥2

∑
{α1,···αn∈Γ̃}
α1+···αn=α

1
S({αk})

g(α1, · · αn,y) Ω̄
+

(α1,y) · ·Ω̄+
(αn,y)

g(α1, · · ·αn,y) will be given shortly.

g(α1, · · ·αn,y)→ g(α1, · · ·αn) as y→ 1

We recover the earlier formulæ as y→ 1



Result for g(α1, . . . , αn,y) (for αij ≡ 〈αi, αj〉 > 0 for i < j)

g(α1, . . . , αn,y) = (−y)−1+n−
∑

i<j αij (y2 − 1)1−n∑
partitions

(−1)s−1y2
∑

a≤b
∑

j<i αji m(a)
i m(b)

j

The sum runs over all ordered partitions of (α1 + · · ·+ αn)
into s vectors β(a) (1 ≤ a ≤ s, 1 ≤ s ≤ n) such that

β(a) =
∑

i

m(a)
i αi, m(a)

i = 0,1 ∀ i

s∑
a=1

β(a) = α1 + · · ·+ αn

〈
b∑

a=1

β(a), α1 + · · ·+ αn

〉
> 0 ∀ b with 1 ≤ b ≤ s− 1



This wall crossing formula

– reproduces the semi-primitive wall crossing formula of
Denef and Moore,

– agrees with the formulæ of Kontsevich and Soibelman
and of Joyce and Song in all cases tested so far (up to n=5)

– the ‘charge conservation rules’ and the ‘identical particle
rules’ agree with the KS formula after expressing the latter
in terms of Ω̄.

However so far we do not have a proof of equivalence.



KS formula:
Gaiotto, Moore, Neitzke; Andriyash, Denef, Jafferis, Moore

Consider the algebra:

[eγ ,eγ′ ] = κ(〈γ, γ′〉,y) eγ+γ′ ,

κ(x,y) ≡ (−y)x − (−y)−x

y− 1/y
.

Define:
V±γ = exp[Ω̄

±
(γ,y)eγ ]

Then ∏
M≥0,N≥0,

M/N↓

V+
Mγ1+Nγ2

=
∏

M≥0,N≥0,
M/N↑

V−Mγ1+Nγ2

– can be used to determine Ω̄
− in terms of Ω̄

+.



‘Derivation’
Supergravity picture: Denef; Denef, Moore

BPS states: Single centered black holes or multi-centered
bound states of single centered black holes.

In c+ the only configurations which contribute to Ω+(γ) are
single units (molecules) which remain immortal across the
wall of marginal stability.

A molecule can contain a single BH of charge γ ∈ Γ̃ or
bound states of multiple BH, each with charge lying
outside Γ̃, but total charge γ ∈ Γ̃.

As we approach the wall the size of the molecule remains
finite.



In c− the index Ω−(γ) gets contribution from single
molecules and also bound states of these molecules.

As we approach the wall from c− the intermolecular
separation goes to∞ and only single molecule states
remain on the other side.

⇒ Ω+ describes the index for single molecules.

Ω− describes the index for single molecules + molecular
bound states.



Naive guess:

∆Ω(α) =
∑
n≥2

∑
{α1,···αn∈Γ̃}
α1+···αn=α

g(α1, · · ·αn) Ω+(α1) · · ·Ω+(αn)

g(α1, · · ·αn): Index of supersymmetric bound states of n
centers with charges α1, · · ·αn, ignoring the internal
contribution to the index from each center.

Caveat: We need to take into account the effect of
symmetrization for identical particles.

Example: Two identical bosonic centers, each with
degeneracy Ω, will produce Ω(Ω + 1)/2 states.

Combining this with non-trivial g is a complicated problem.



Strategy:

1. Argue that we can replace Bose/Fermi statistics by
Boltzmann statistics if we replace Ω by Ω̄.

Then

∆Ω̄(α) =
∑
n≥2

∑
{α1,···αn∈Γ̃}
α1+···αn=α

1
S({αk})

g(α1, · · ·αn) Ω̄
+

(α1) · · · Ω̄+
(αn)

S({αk}): Boltzmann factor (m! for m identical particles)

2. Calculate g(α1, · · ·αn) by computing the index
associated with n-molecule quantum mechanics treating
the different molecules as distinguishible (even if some of
the αk’s are equal).



Bose/Fermi to Boltzmann

Consider a system of mutually non-interacting molecules
carrying charges ∝ γ0, with total charge kγ0.

e.g. ms molecules with charge sγ0, with
∑

s sms = k.

ds: index of the molecule of charge sγ0.

Net index Nk =
∑
{ms}∑
s sms=k

∏
s

[
1

ms!

(ds + ms − 1)!

(ds − 1))!

]



Nk =
∑
{ms}∑
s sms=k

∏
s

[
1

ms!

(ds + ms − 1)!

(ds − 1))!

]

For bosons ds > 0, and ms identical bosons occupying ds
states produce a degeneracy of

d(B) = ds(ds + 1) · · · (ds + ms − 1)/ms!

For fermions ds < 0, and ms fermions occupying |ds| states
have total degeneracy

d(F) = (|ds|)(|ds| − 1) · · · (|ds| −ms + 1)/ms!

and index

(−1)msd(F) = ds(ds + 1) · · · (ds + ms − 1)/ms!



Now consider a system of particles carrying charges sγ0
for s = 1,2, · · · , obeying Boltzman statistics, and carrying
index

d̄s =
∑
m|s

m−1ds/m

Total index of a state carrying charge kγ0 made out of
these particles:

Mk =
∑
{ms}∑
s sms=k

∏
s

1
ms!

(d̄s)ms



Mk =
∑
{ms}∑
s sms=k

∏
s

1
ms!

(d̄s)ms

d̄s =
∑
m|s

m−1ds/m

Nk =
∑
{ms}∑
s sms=k

∏
s

[
1

ms!

(ds + ms − 1)!

(ds − 1))!

]

One can easily check that∑
k

Mxxk =
∏

n

(1− xn)−dn =
∑

k

Nkxk

Thus
Mk = Nk



ds gets contribution from orbital part dorb(sγ0) and internal
part Ω(sγ0).

We shall argue that dorb(kγ0) = k dorb(γ0)

⇒ d̄s =
∑
m|s

m−1ds/m

=
∑
m|s

m−1dorb(sγ0/m)Ω(sγ0/m)

=
∑
m|s

m−1(1/m)dorb(sγ0)Ω(sγ0/m)

= dorb(sγ0)
∑
m|s

m−2Ω(sγ0/m) = dorb(sγ0)Ω̄(sγ0)(1)

⇒ we can use Boltzmann statistics provided Ω→ Ω̄.



Multi-centered black hole dynamics:

1. The centers move in the minimum of the potential.

If we fix the position of one then for every other center we
have a 2 dimensional configuration space.

2. The centers interact via Lorentz force

– ignore interaction among parallel charges

3. Supersymmetry forces the system to be in the ground
state (‘lowest Landau level’)

– the configuration space can be regarded as the phase
space with a definite symplectic form

de Boer, El-Showk, Messamah, Van den Bleeken



Now compare two configurations:

1. k identical nearly coincident centers each with charge γ0
moving in a background of other charges.

2. A center of charge kγ0 moving in the same background.

Compare the phase space density associated with the two
dimensional motion of kγ0 vs the two dimensional motion
of a single γ0, keeping all the other charges fixed.

The phase space density of the particle of charge kγ0 is k
times that of the particle of charge γ0.

dorb(kγ0) = k dorb(γ0)

We assume that the classical result is not corrected by
quantum effects.



Our next goal is to compute g(α1, · · ·αn,y).

⇒ quantize multi-centered black hole solutions.

1. Indirect approach: relates the index associated with this
quantum mechanics to that of a supersymmetric quiver quantum
mechanics with Denef

a. n nodes each carrying a U(1) factor

b. αij ≡ 〈αi, αj〉 arrows from node i to node j

Result for this class of quivers is known and gives us back the
formula for g(α1, · · ·αn,y) given earlier. Reineke



2. Direct approach: Calculate the index by expressing it as
an integral over the classical phase space and then
evaluating this integral using localization techniques.

Duistermaat, Heckman



Result of direct approach (+ some guesswork based on
known results for n = 2,3)

g(α1, · · ·αn,y) = Tr(−y)2J3

Of these (−1)2J3 takes the same value on all states:
de Boer, El-Showk, Messamah, Van den Bleeken

(−1)2J3 = (−1)
∑

i<j αij+n−1

y2J3 is a slowly varying function of the phase space
coordinates for y ' 1

⇒ Tr(y2J3) can be evaluated as an integral over classical
phase space

gcl(α1, · · ·αn; y) = (−1)
∑

i<i αij+n−1
∫

(y)2J3



gcl(α1, · · ·αn; y) = (−1)
∑

i<i αij+n−1
∫

(y)2J3

The phase space has an SU(2) rotation symmetry.

– can be used to express the integral as a sum over fixed
points of rotation along z-axis

– collinear configuration of multi-centered black holes
given by solutions to Denef

n∑
j=1
j 6=i

αij∣∣zij
∣∣ = L

n∑
j=1
j6=i

αij, zij ≡ zi − zj, L > 0

Solutions labelled by permutations σ such that

zσ(i) < zσ(j) for i < j



Then the phase space integral gives:

gcl({αi},y) = (−1)
∑

i<j αij+n−1(2 ln y)1−n∑
permutationsσ

s(σ) y
∑

i<j ασ(i)σ(j)

The sum runs over only those permutations for which the
solution exists.

s(σ): a sign which can be determined

At y = 1 this agrees with the quiver quantum mechanics
result in all cases tested.



gcl({αi},y) = (−1)
∑

i<j αij+n−1(2 ln y)1−n∑
permutationsσ

s(σ) y
∑

i<j ασ(i)σ(j)

– cannot be the correct quantum result for Tr(y2J3) which
must have y→ e2πiy symmetry.

– reflects the fact that classical phase space integral does
not know about angular momentum quantization.

Taking clue from known results for n = 2,3 we replace 2 ln y
by 2 sinh ln y = (y− y−1):

g({αi},y) = (−1)
∑

i<j αij+n−1(y− y−1)1−n∑
permutationsσ

s(σ) y
∑

i<j ασ(i)σ(j)



g({αi},y) = (−1)
∑

i<j αij+n−1(y− y−1)1−n∑
permutationsσ

s(σ) y
∑

i<j ασ(i)σ(j)

– agrees with the quiver quantum mechanics results in all
cases tested (up to n=5).

(also seems to work away from the wall of marginal
stability where quiver quantum mechanics sometimes
fails.)



Multi-centered black hole bound states
Consider an N = 2 supersymmetric string theory at a
generic point of the moduli space.

For a given charge α the index receives contribution from
single centered black holes as well as multi-centered black
holes.

The index Ω for a single centered black hole can be
computed in principle using quantum entropy function
formalism. talk by Atish

Question: How can we use this information to compute the
index associated with multi-centered black holes?



Naive guess: Use the same formula for the bound state
spectrum as near the wall of marginal stability.∑

n≥1

∑
{α1,···αn∈Γ}
α1+···αn=α

1
S({αk})

g(α1, · · αn,y) Ω̄(α1,y) · ·Ω̄(αn,y)

g({αi},y) = (−1)
∑

i<j αij+n−1(y− y−1)1−n∑
permutationsσ

s(σ) y
∑

i<j ασ(i)σ(j)

Differences:

1. αi’s span the full lattice instead of 2D sublattice.

2. The Ω’s now refer to index of single centered black holes
rather than black hole molecules.



Caveats:

1. In this case the relevant equations are

n∑
j=1
j6=i

αij∣∣zij
∣∣ = ci

ci: constants which depend on moduli and charges

– necessary but not sufficient conditions for existence of
collinear multi-black hole solutions.

For each such solution we must check that the
corresponding metric is regular.

– a simple algebraic procedure.



2. For some charges, besides collinear solutions we also
have ‘scaling solutions’ which are invariant under rotation
about the z-axis.

– solutions where all the centers approach each other.

How do we evaluate the contribution from these additional
fixed points?

Our proposal: use ‘minimal modification hypothesis’



1. First ignore the contribution from the scaling solutions
and express the result for the index of bound states of
centers carrying charges α1, · · ·αn as sum of terms like

f(· · · ; y) Ω(αi1 ,y
m1) · · ·Ω(αik ,y

mk)

2. If f(· · · ; y) is a finite linear combination of y±m, ı.e. if the
denominators involving (yk − y−k) are cancelled by the
numerator factors, then leave the term unchanged.

3. Otherwise add to f a function h such that

a. (f + h) is a finite linear combination of y±m.

b. h vanishes as y→∞.

This algorithm gives the correct result in all known cases.



Example:

Suppose we have a three centered configuration and
suppose that the contribution from collinear solutions
leads to the following result for f(α1, α2, α3,y):

(−1)I (y− y−1)−2
(

yI + y−I
)
, I ≡

∑
i<j

αij

– not a finite linear combination of y±m.

Our prescription gives

(−1)I (y− y−1)−2
(

yI + y−I − 2
)

for I even

(−1)I (y− y−1)−2
(

yI + y−I − y− y−1
)

for I odd



This gives a complete algorithm for computing the index
for a given charge α in an N = 2 supersymmetric string
theory if we know the index Ω of single centered black
holes.

This can then be compared with the microscopic results.

•


